
1

Packing Algorithms

An instance of a packing problem consists of:

1. Items (associated with sizes, weights, profits).

2. Bins with limited capacity.

3. A set of constraints.

General Goal: Place items in the bin, items must not
overlap with each other. Bins may not be filled
beyond their capacity.

2

Packing Problems

Variants:

• Multi-dimensional items.

• Limited number of bins – pack as much as you can.

• Unlimited number of bins – pack all items using
minimal number of bins.

• Conflicting items – cannot be placed together.

• Cardinality constraints.

• Cutting stock (minimizing wasted material)

• Class-constraints.

• Online vs. offline

• Variable bins.

• Many more…

3

Popular Applications

• Physical items  boxes, tracks (shipping, delivery).

• Files  disks.

• Advertisements  commercial break/ magazines /
web-pages.

• Orders  limited amount of material

• Jobs  processors.

4

The Knapsack problem

• You are about to go to a camp.
• There are many items you want to take.
• You have one knapsack. The total weight
you can carry is at most W.
• Item i in your list has weight wi, and value
(benefit) bi, that measures how much you
really need it.
• You need to pack the knapsack in a way
that maximizes the total value of the
packed items.

5

The Knapsack problem

Item # Weight Value
1 1 8
2 3 6
3 5 5
4 4 6

Max
weight
=8

A possible packing: Items 2 and 3. Value: 11

An optimal packing: Items 1,2,4. Value: 20

The Knapsack problem is NP-hard.

http://www.scouting.org.za/clipart/backpack.gif

6

Greedy Algorithm for Knapsack

1. Consider the items in order of non-
increasing bi/wi ratio
b1/w1  b2/w2  …  bn/wn

2. Add items to the knapsack as long as there
is space.

Time Complexity:
O(n log n) (for sorting)
O(n) for packing loop.

 O(n log n)

7

Greedy Algorithm for Knapsack

Claim: The approximation ratio of Greedy is
not bounded.

Proof: To get ratio c, consider the following
instance:

There are two items:
b1= 2, w1= 1
b2= 2c, w2= 2c

Greedy packs only the first item, value = 2.
Optimal: Pack the second item, value=2c
Ratio = c.

The knapsack has
volume W = 2c

8

Improved Algorithm for Knapsack

Take the maximum of Greedy and the most
valuable item that fits by itself.

Theorem: The above algorithm is 2-approximation.
Proof: We assume w.l.o.g that no single item has

weight more than W (these items can be removed
in a preprocessing).

Sort the items such that b1/w1  b2/w2  …  bn/wn.

Let B be the largest value of an item, and let G be the
value computed by the greedy algorithm.

Let j be the first item that the greedy algorithm
rejects.

9

Improved Algorithm for Knapsack

ALG = max(B, G)  (B + G)/2

G = (item j is the first to be rejected)

B  bj (B is the most profitable)

G+B  opt <

 ALG > opt/2




1-j

1i
ib




j

1i
ib 



j

1i
ib Because the first j

items have the
largest ‘profit
density’

10

Exact Solution – dynamic programming

Variant 1:
Define a table M of size (n+1)(W+1), where the (i, x)
entry corresponds to the maximal profit that can be
obtained from the first i items and a knapsack having
capacity x.

The solution to the knapsack problem lies in M(n,W).

Base cases:
If i = 0, then there are no items to pack: M(0, x) = 0.
If x < 0 then M(i, x) = −∞.

11

Exact Solution – dynamic programming

The DP recursion:

M(i, x) = max { M(i−1, x) , M(i−1, x−wi) + bi}.

*n

…

i

i-1

…

0…0…00000

W…x…4321

The solution
lies here

We take the maximum of two options:
1. M(i−1, x): not packing the i-th item.
2. M(i−1, x−wi) + bi : packing the i-th item.

Knapsack DP Example

4

3

2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i/x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Weights:{2, 4, 7, 10} Values: {3, 7, 9, 16}

Assume n=4 and W=17.

In class exercise – complete the table

Knapsack DP Example

4 0 3 3 7 7 10 10 10 12 16 16 19 19 23 23 26 26

3 0 3 3 7 7 10 10 10 12 12 12 12 19 19 19 19 19

2 0 3 3 7 7 10 10 10 10 10 10 10 10 10 10 10 10

1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i/x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Weights:{2, 4, 7, 10} Values: {3, 7, 9, 16}

Assume n=4 and W=17.

M(3,9)= max{M(2,9), M(2,2)+9} = 3+9=12

M(4,12)= max{M(3,12), M(3,2)+16}=3+16=19.

14

Exact Solution – dynamic programming

Variant 2:
Define a table M of size (n+1)(ibi), where the (i, v)
entry corresponds to the minimum weight of a
combination of the first i items with value at least v.

The solution is in the entry with the maximum v
where M(n, v) < W. This entry can find by scanning
all entries in the line of i = n.

Base cases:
If M(0, 0) = 0.
If M(0, v) = ∞ for all v > 0.

15

Exact Solution – dynamic programming
The DP recursion:

M(i, v) = min { M(i−1, v) , M(i−1, v−bi) + wi}.

n

…

i

i-1

…

0…0…00000

ibi…v…4321

The solution
lies in this
line

We take the minimum of two options:
1. M(i−1, v): not packing the i-th item.
2. M(i−1, v−bi) + wi : packing the i-th item.

16

Exact Solution – dynamic programming

The second DP variant is the basis of our next
approximation algorithm.

The Knapsack problem is ‘easy to approximate’ – we
can get as closer to an optimal solution as required.

Formally, it has a fully polynomial time approximation
scheme (FPTAS)

17

Polynomial Time Approximation Scheme

A polynomial time approximation scheme is an
algorithm which takes as input an additional
parameter, , which determines the desired
approximation ratio. This ratio can be arbitrarily
close to 1, when  approaches 0.

The time complexity of the scheme is polynomial in
the input size but may be exponential in 1/.
For example, the following running times are
acceptable for a PTAS:

• O(n2/ε)
• O(n10021/ε)
• O(n2^2^1/ε)

18

A Fully Polynomial Time Approximation
Scheme

A fully polynomial time approximation scheme
(FPTAS) is a PTAS with running time polynomial
in both n and 1/ε.

The good news: The Knapsack problem has a fully
polynomial time approximation scheme.

19

FPTAS for Knapsack

The DP has size n·ibi

ibi is loosely bounded by n·B, where B = max(bi).
Since we must compute every cell in the table, the
DP running time is O(n2B), which is pseudo-
polynomial.

To construct the FPTAS, we will reduce the
number of distinct value categories (columns).

We will have only poly(n)/ε value categories by
scaling and rounding each bi

This way, the DP table will have size poly(n,1/ε). As
a result the running time will also be poly(n,1/ε).

20

FPTAS for Knapsack

1. Given ε > 0, let k = εB/n be the scaling
parameter.

2. Replace every item value 𝑏𝑖 by 𝑏′𝑖 =
𝑏𝑖

𝑘
𝑘.

The number of columns (different values of 𝑏′𝑖) is

now no more than 𝑛
𝐵

𝑘
=

𝑛2

𝜀
.

3. Apply the DP (variant 2) with values 𝑏′𝑖 . the
running time is O(n3/ε) = O(poly(n,1/ε).

Theorem: The profit achieved by the algorithm is
at least (1- ε)OPT.

Proof: In class.

21

The Bin Packing Problem

▪ Input: Items of sizes 0 < si < 1

▪ Output: A feasible packing in bins of size 1

▪ Goal: minimize number of bins used.

0.45 0.20.3

0.25 0.3

0.45

0.70.2

Example:

Input:

0.45

0.20.3

0.25

0.3

0.45

0.7

0.2

A packing in 3 bins:

22

Approximating Bin Packing

Next-fit Algorithm:
1. Open an active bin.
2. For all i=1,2,…,n :

– If possible, place ai in the current active bin;
– Otherwise, open a new active bin and place ai in it.

Example: The input: {0.3, 0.9, 0.2}.
Next-fit packing (three bins): (0.3), (0.9), (0.2).

Theorem: Next-fit is 2-approximation to BP
Proof: An optimal algorithm must use at least iai bins

(why?).

23

Approximating Bin Packing

Analysis of Next Fit (cont’): Assume that Next Fit
uses h bins. The sum of items sizes in two
consecutive bins is greater than 1 (otherwise,
we can put them together).

Case 1: h is even:
c(B1) + c(B2) > 1
c(B3) + c(B4) > 1
c(Bh-1) + c(Bh) > 1
iai > h/2

Case 1: h is odd:
c(B1) + c(B2) > 1
c(B3) + c(B4) > 1
c(Bh-2) + c(Bh-1) > 1

iai > (h-1)/2 + c(Bh)

In both cases, we can obtain h  2iai  2opt

Remark: it can be shown that h  2opt-1

24

Approximating Bin Packing

Is the analysis tight? consider an instance
with 4n items {1/2, 1/2n, 1/2, 1/2n, …}.

Next-fit will put any two consecutive items
in a bin.

Total number of bin used: 2n.

An optimal packing in n+1 bins: n bins, each
with 1/2+1/2, one bin for the tiny items.

The ratio: 2n/(n+1)  2 as n grows.

25

Approximating Bin Packing

First fit algorithm: place the next item in the
first open bin that can accommodate it. Open a
new bin only if no open bin has enough room.

Theorem: hff  1.7opt +2 (proof not here)

First fit Decreasing: sort the items from
largest to smallest. Run FF according to the
resulting order.

Theorem: hffd  1.222opt + 3 (proof not here)

▪ No additive-error approximation is known for

bin packing. That is, the best known is (1+)opt.

26

Unit Fractions Bin Packing

▪ A Unit Fraction: A fraction of the form 1/i for

an integer i.

▪ Input: integers w1,w2,…,wn.

▪ Goal: Bin packing of the unit fractions {1/w1,

1/w2,…,1/wn}.

▪ Let . Clearly, OPT(W)  H(W).

▪ We will see: An algorithm that uses at most H(W)+1

bins (additive error of one for any input).

 
w

1
WH

Wi
i








 

27

Any-fit Decreasing for UFBP
1. Sort the items such that 1/w1  1/w2    1/wn

2. Pack the items in this order, each item is placed
in any open bin that can accommodate it, or in a
new bin, if none exists.

Theorem: The number of bins used is at most

OPT 1
w

1
 1

i
i









 

Proof idea: After packing all the items of size at
least 1/k :
(i) There are at most k-1 non-full bins, and
(ii) Each of the non-full bins is at least 1-1/k full.

Details: In Class

28

Any-fit Decreasing for UFBP

4

1

4

1

4

1

3

1

3

1

2

1
,,,,,

Remark: The analysis is tight (the alg. is not optimal)

Example: - in decreasing order.









4

1

4

1

2

1
,,









4

1

3

1

3

1
,,

- Can be packed in two bins:

- Will be packed in three bins:









3

1

2

1
,









4

1









4

1

4

1

3

1
,,

29

Online Bin Packing

The input: A sequence of items (numbers), a1,a2,…,an,
such that for all i, 0 < ai <1

The goal: ‘pack’ the items in bins of size 1. Use as few
bins as possible.

Example: The input: 1/2, 1/3, 2/5, 1/6, 1/5, 2/5.

Optimal packing in two bins:

(1/2, 1/3, 1/6), (2/5, 2/5, 1/5).

Legal packing in three bins:

(1/2, 1/3), (2/5, 1/6, 1/5), (2/5)

Online BP: ai must be packed before we know ai+1,..,an

30

size

type k

0 11/21/4 1/3

.... 6 5 4 3 2 1

k1

The HARMONIC-k Algorithm

Classify items into k intervals according to size
(1/2,1] one item per bin
(1/3,1/2] two items per bin
…
(1/k,1/(k-1)] k-1 items per bin
(0,1/k] use NF

31

The HARMONIC Algorithm

• Each bin contains items from only one
class: i items of type i per bin

• Items of last type are packed using NEXT
FIT: use one bin until next item does not
fit, then start a new bin

• Keeps k-1 bins open

32

Analysis of HARMONIC-3

• Let X be the number of bins for (1/2,1]
– Those bins are full by more than 1/2

• Let Y be the number of bins for (1/3,1/2]
– Those bins are full by more than 2/3

• Let T be the number of bins for (0,1/3]
– Those bins are full by more than 2/3

Let W be the total size of all items

Then W>X/2+2Y/3+2T/3

33

Analysis of HARMONIC-3

Other bounds:

• OPT X (items larger than 1/2)

• OPT (X+2Y)/2 (items larger than 1/3)

• H3 X+Y+T (+2) (3(W+X/6))/2(+2)

3W/2+X/4 (+2) 1.75OPT (+2)





 

 

Asymptotically, this is neglected.

34

Analysis of HARMONIC-4

• Let X be the number of bins for (1/2,1]
– Those bins are full by more than 1/2

• Let Y be the number of bins for (1/3,1/2]
– Those bins are full by more than 2/3

• Let Z be the number of bins for (1/4,1/3]
– Those bins are full by more than 3/4

• Let T be the number of bins for (0,1/4]
– Those bins are full by more than 3/4

• Let W be the total size of all items
Then W>X/2+2Y/3+3Z/4+3T/4

35

Analysis of HARMONIC-4

Other bounds:
• OPT X (items larger than 1/2)
• OPT (X+2Y)/2 (items larger than 1/3)

• H4 X+Y+Z+T (+3)
(4(W+X/4+Y/12))/3(+3)

4·W/3+X/3+Y/9 (+3) =

=4·W/3+(x/18+Y/9)+5·X/18 (+3)
31·OPT /18 (+3) 1.7222·OPT (+3)





 



 

36

Analysis of HARMONIC

• Theorem: For any k, Harmonic-k is at most
1.691 competitive.

• Proof: C. C. Lee and D. T. Lee. A simple on-
line bin-packing algorithm. Journal of the
ACM 32 (3) July 1985. (beyond our scope.
Available in the course web-page).

