
A Simple On-Line Bin-Packing Algorithm

C. C. LEE AND D. T. LEE

Northwestern University, Evanston, Illinois

Abstract. The one-dimensional on-line bin-packing problem is considered. A simple 0(I)-space and
O(n)-time algorithm, called HARMONI&, is presented. It is shown that this algorithm can achieve a
worst-case performance ratio of less than 1.692, which is better than that of the O(n)-space and
O(n log n)-time algorithm FIRST FIT. Also shown is that 1.69 I. . . is a lower bound for all 0(l)-space
on-line bin-packing algorithms. Finally a revised version of HARMONIC,,,, an O(n)-space and O(n)-
time algorithm, is presented and is shown to have a worst-case performance ratio of less than 1.636.

Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms-sequencing and scheduling G2.m [Discrete Mathematics]: Miscellaneous

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bin packing, on line, suboptimal algorithms

I. Introduction
The classical (one-dimensional) bin-packing problem is to pack a list of items L =
(a, a2, * * * , a,), where ai E (0, I] for all i, into a minimum number of bins each
of unit capacity. This problem arises in a wide variety of contexts and has been
studied extensively since the early 1970s. Since this problem has been shown to be
NP-complete [3, 81, various heuristic algorithms with guaranteed bounds on
performance have been proposed [5-71. Summaries of these results can be found
in the surveys by Garey and Johnson [4] and Coffman et al. [2].

Let L* and A(L) denote, respectively, the number of bins used by an optimum
algorithm and the number of bins used by a heurustic algorithm A to pack the
input list L. Then, the worst-case performance ratio of A, denoted by r(A), is
defined as lim L*+, supL [A(L)/L*]. This ratio is customarily used to evaluate the
performance of a heuristic bin-packing algorithm.

In this paper we deal only with on-line bin packing for which items in the list
must be processed in exactly the same order as they are given, one at a time. The
on-line processing is difficult owing to unpredictable item sizes that may appear.
In general, the performance of an on-line bin-packing algorithm is substantially
affected by the permutation of items in a given list. The NEXT-FIT and FIRST-
FIT are two well-known on-line bin-packing algorithms [2, 41. It is not difficult to

The research of C. C. Lee was supported in part by the National Science Foundation under Grant ESC-
8307264. The research of D. T. Lee was supported in part by the National Science Foundation under
Grants MCS-8202359 and ECS-8 12 174 1.
Authors’ address: Department of Electrical Engineering and Computer Science, Northwestern Univer-
sity, Evanston, IL 6020 1.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 l/85/0700-0562$00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 3, July 1985, pp. 562-572.

A Simple On-Line Bin-Packing Algorithm 563

prove that r(NEXT-FIT) = 2, while the proof of r(FIRST-FIT) = 1.7 is fairly
involved [7].

A question was raised by Johnson [6] as to whether or not there exists a
polynomial-time on-line algorithm A better than FIRST-FIT (i.e., with r(A) < 1.7)
and was recently resolved by Yao [121 in the affirmative. To be precise, Yao has
presented an algorithm, dubbed REFINED FIRST-FIT, with a worst-case perform-
ance ratio of 5/3 = 1.666 . . . , which is the best ratio achieved by an on-line bin-
packing algorithm known to date. In the same paper [121, Yao also established
that any on-line algorithm A must have a worst-case performance ratio of at least
1.5. The bound was later improved to 1.536 . . . by Liang [1 l] and Brown [11.

In addition to the performance ratio, we also consider the time and the space
complexity of on-line bin-packing algorithms. We use TA(n) to denote the total
time required by on-line bin-packing algorithm A to pack the list L whose size is
n, and refer to algorithm A as a TA(n)-time algorithm. Thus, NEXT-FIT is an
O(n)-time algorithm, whereas FIRST-FIT and REFINED FIRST-FIT are both
O(n log n)-time algorithms. For convenience, a nonempty bin during the processing
is called “filled” if it is not intended to pack any more items and “active” if it is.
Using the uniform cost criterion for space, we need one storage location for each
active bin. As soon as a bin becomes filled, it is among the output of the algorithm
used, and we do not count its storage location in defining the space complexity of
the algorithm. Specifically, we use SA(n) to denote the maximum number of storage
locations (for active bins) needed by algorithm A during the processing of the list
L whose size is n, and refer to algorithm A as an SA(n)-space algorithm. For
example, NEXT-FIT is an 0(I)-space algorithm, since it involves only one active
bin at all times, and FIRST-FIT is an O(n)-space algorithm, since in this case all
nonempty bins remain active until the end of the processing.

In this paper we present a new on-line bin-packing algorithm, called HAR-
MONIC,+,, which is based on a special, nonuniform partitioning of the interval
(0, l] into A4 subintervals, where M is not to exceed 12 in practice. The algo-
rithm uses no more than the constant M storage locations and runs in O(n)
time. The worst-case performance ratio is shown to be strictly better than that of
FIRST-FIT for M > 6. Specifically, it is shown that r(HARMONI&) = 1.692 . . .
for M = 12, and that limM, r(HARMONI&) = 1.69 10 Moreover, we show
that 1.6910.. . is the greatest lower bound for all 0(I)-space on-line bin-packing
algorithms. It can be shown [lo] that the expected-case performance ratio of
HARMONIC,,, is substantially better than that of NEXT-FIT when the item sizes
are uniformly distributed. Finally, a slightly modified version of HARMONI&,
called REFINED-HARMONIC, is presented. It is an O(n)-space and O(n)-time
algorithm and its worst-case performance ratio is shown to be better than 1.636.

2. The Algorithm HARMONICM
Given a list L = (al, a2, . . . , a,), where ai E (0, l] for all i, we classify each item
ai according to the following “harmonic partitioning” of the unit interval (0, I]:
(0, l] = UF=,Z,, where Ik = (l/(k + I), l/k], 1 I k < Mand ZM = (0, l/M], where
A4 is a positive integer. An item ai will be called an &piece if ai E Zk, 1 5 k I A4.
Similarly, the bins are also classified into M categories. A bin designated to pack
&-pieces exclusively is called an &-bin. Note that each &-bin packs at most k Zk-
pieces for 1 I k < A4 and is referred to as being filled if it has exactly k Zk-pieces,
and unfilled otherwise. Let mk denote the number of &bins used by the algorithm,
1 I k d M. In the following algorithm, we keep at all times an active (untilled) Ik-
bin for each 1 5 k 5 M.

564 C. C. LEE AND D. T. LEE

Algorithm HARMONICM

Fork:= 1 toMdomkcO
For i := 1 to n do

If ai is an Ik-piece, 1 5 k < M
then begin place ai into the Zk-bin

if the Ik-bin is filled
then mk c mk + 1 and get a new Ik-bin

end
else (Comment: ai is an IKpiece)

begin
if there is room for ai in the I,+,-bin
then pack it

end
else mM c mM + 1 and get a new L-bin

This algorithm essentially performs item classification for each incoming item
and then packs it by NEXT-FIT into a corresponding bin. Since item classification
can be done in O(logM) time, and there are only M active bins at any time, the
algorithm runs in O(n 1ogM) time and uses M storage spaces for active bins. As is
shown later, the worst-case performance ratio of the algorithm is insensitive to the
partition number M, a reasonable and practical range of M is 3 5 A4 5 12.
Therefore, M can be regarded as a constant, and hence we have an 0(I)-space and
O(n)-time algorithm. Another crucial advantage of this algorithm is that each filled
Zk-bin, 1 5 k < M, packs exactly k items, irrespective of the actual sizes of these
items in the interval Zk. Also, except for I,+,-bins, the number of bins used by
HARMONIC,+, is completely independent of the arriving order of items. In other
words, except for Z,,,,-bins, any permutation of the items in L will result in the same
number of bins used by HARMONI&. These advantages make the analysis of its
worst-case performance relatively easy and is the motivation of doing the harmonic
partitioning.

3. Worst-Case Analysis of HARMONICM

Let flk denote the number of Ik-pieces in the list L, for 1 5 k 5 1M, and sM denote
the total size of Z,,,,-pieces, that is, sM = &,EIMai. The total number of bins used by
HARMONI&, denoted HARMONI&(is CE, mk, where mk is the number
of Ik-bins used. It is easy to see that

andfor2<k<M,

ml = nl (3.1)

(3.2)

where [xl denotes the smallest integer no less than x.
Since the size of each Zwpiece is at most l/M, each filled I,,,-bin must be packed

to a capacity greater than (M - 1)/M. We thus have

rnM< Li4 %il41*
Combining (3.1)-(3.3) we have

HARMONICM(L) = nl + 2 + [“‘I e-e + [fi\+mM

+ * + (M - 1). (3.4)

A Simple On-Line Bin-Packing Algorithm 565

The last term (M - 1) of (3.4) accounts for the total number of possibly unfilled
bins at the end of the processing and can be ignored when asymptotic performance
ratio is considered. Asymptotically, each &-piece costs HARMONI& l/k bin, for
1 I k < IV, and an I,,,,-piece of size y will cost HARMONICV no more than
MyI(M - 1) of a bin. We therefore define afiaction function g in (0, l] as

if xEZk and lsk<M

Mx =-
M- 1

if x E ZM.

Consider an optimal packing that uses L* bins. Let the content of the ith bin be
denoted as (JJ~I, JJ;~, . . . , yi,,), ti > 0, with yil 2 yi2 2 . . * 2 Yiri > 0. Since each bin
has a maximum capacity 1, we have yil + yi2 f e . . + yili 5 1. Thus, the list L =
(4, a2, . . . , a,,) of items can be expressed as the concatenation of L* lists, (yil, JJi2,
. . .) Yit,), i = 1, 2, . . .) L*, each of which corresponds to the content of a bin in
the optimal packing. In terms of the fraction function g, the number of bins used
by HARMONICM, for a given M, to pack (yil, yi2, . . . , yil,) can be written as

Gi,M = I$ &‘im), i=1,2 ,..., L*.
Wl=l

Let S = ICYI, Y2, . . . , Yt) I Yi > 0, 1 5 i 5 t, and xi=, yi P 11 be the set containing
all possible partitions of 1, and let GM = SUPS&~ g(yi). Thus, we have Gi,M 5 G,+,
for all i and we can therefore rewrite (3.4) as

HARMONICM(L) < i &al) + (M - 1)
i=I

= ,E Gi,M + (M - 1)

5 (&,)L* + (M - 1). (3.6)
This implies that GM is an upper bound for the worst-case performance ratio for

HARMONICM since

r(HARMONICM) = limL*, supL
HARMONIC,+,(L) < GM

L* -.

Therefore, we shall concentrate on finding the bound on the number GrM =
C:=l g(yi), given J&l yi I 1.

For x E Zk, 1 5 k < M, we have x > l/(k + 1) and g(x) = l/k and, therefore,
g(x)/x = l/(kx) < (k + 1)/k. Since (k + 1)/k is monotone decreasing with k, we
have the following inequality:

g(x) k + 1 1 -<-
x- k

if x<- k and 1 rk<M.

Define the sequence ki, as follows:

k, = 1 and ki+r = ki(ki + 1) for ill. (3.8)
It is not difficult to see that

for i I 2. (3.9)

566 C. C. LEE AND D. T. LEE

We now prove our main result.

THEOREM 1. For i > 1, ki < M I ki+l, where ki is given by (3.Q

r(HARMONIG) 5 t& = f: 1 + M
j-1 kj ki+l(M - 1)’

PROOF. Let QM = C&l l/k, + M/(ki+l(M - 1)). First, if J+ 4 II, then yi < l/2
= l/k2 for 1 5 i 5 t. From (3.7), we have g(yi) or 3yJ2 and therefore GM 5
3/2 &1 JJi I 3/2 5 Q,,,, for M > kz. Next let us assume that yr E Ik,, yz E Ik2, . . . ,
.&I E rk,-,, and yj 4 Ik,, for some j 5 i. Then J$jys % 1 /kj and y, < 1 /(kj + 1) for
all s % j. Thus, from (3.7) and (3.8), we have

1 + l/(kj + 1)
=?;+ k, s J

=$&;$<QM.
s s

Finally, suppose that yl E Ik,, y2 E Ikz, . . . , yi E zk,. Then we have z&,+l ys <
l/ki+l , and since M 5 k, r+l, JJs E ZM for s > ki. Thus, GM = J$, l/kj +
M/(M - l).C&k,++ ys < QM. In addition, it is easy to verify that limd G,+, = QM
if yj = l/(kj + 1) + t for 1 5 j 5 i and C&+r ys = l/(kj+l) - E. We conclude that
G, = QM. Q.E.D.

COROLLARY 1

lim r(HARMONICM) I G, = ,$ i
M-C=

1 1 1 1
= 1 + -2 + 6- + 42 + 42.43 + * * *

= 1.6910....

The numerical values of the performance bound GM for various A4 are listed in
Table I. In view of Corollary 1 and G12 = 1.6926 . . . (see Table I), little improvement
on the performance is achieved beyond M = 12. Since a smaller M is more desirable
from a practical viewpoint, the region 3 5 A4 5 12 is recommended for practical
use of HARMONI&. When M = k. ,+I, i L 2, we prove in the following theorem
that the bound for r(HARMONICM) in Theorem 1 is tight.

THEOREM 2. For M = ki+l, i 2 2, r(HARMONICM) = CM = $1 l/kj +
l/(M- 1).

PROOF. Consider items of i + 2 sizes: Uj = l/(kj + 1) + l/c, 1 5 j s i, Ui+l =
l/b+, - i/c, and u;+~ = l/d, where c and d are sufficiently large integers. Note
that Cg: aj = 1 and both ai+r and Ui+2 are Zwpieces. Assume that the list L con-
sists of Xuis, for each 1 <j 5 i -t 1, and Y = X/(M - 1) Ui+z’s and that the arrival
pattern of the ai+l’s and ai+z’s is a sequence of (M - 1) ai+r’s followed by one ai+2,
which repeats Y times. Thus, algorithm HARMONICM packs exactly (M - 1)
Ui+l’s and one Ui+z into one bin and uses a total of HARMONI& = Cj=,

A Simple On-Line Bin-Packing Algorithm 567

TABLE I. THE WORST-CASE
PERFORMANCE BOUNDS FOR

ALGORITHM HARMONQ,
WITH PARTITION NUMBER M

M GM

3 1.75
4 1.7222 . . .
5 1.7083 . .
6 1.7
7 1.6944...
8 1.6938 . . .
9 1.6934.. .

10 1.6931...
11 1.6928 .
12 1.6926...
42 1.6910.. .
co 1.6910...

X/kj + X/(M - 1) bins, whereas an optimal algorithm uses L* = X + X/((M -
1)d) bins. Therefore,

HARMONIC,,,(L) c:=, llki + l/CM - 1)
= L* 1 + l/((M - 1)d)

and the claim follows since d can be arbitrarily large. Q.E.D.

4. The Asymptotic Optimality of HARMONICM
In comparison with the lower bound 1.536 . . . for the worst-case ratio of all on-
line bin-packing algorithms established by Liang [1 I] and Brown [11, the number
G- of Corollary 1 is still about 10 percent larger. However, we show that no O(l)-
space on-line bin-packing algorithm can do better than &.

Letxr= 1/2+e,x2= 1/3+e,andxJ= l/6 - 2e, where e is a sufficiently small
positive number. Consider a list L containing n/3 XI’S, followed by n/3 x2’s, and
then n/3 x3’s. With no exception, any on-line bin-packing algorithm must use n/3
bins to finish packing XI pieces. Under the assumption that the maximum number
T of storage locations for active bins allowed is a constant (i.e., 0(I)-space) we
can only keep T of these n/3 bins for further packing. Therefore, any on-line
algorithm requires more than (n/3 - 2T)/2 bins to pack all x2’s. Since no more
than T nonempty bins can be kept, any algorithm requires more than (n/3 -
6T)/6 bins to pack all x3%.. As a result, any on-line algorithm requires more than
(1 + l/2 + 1/6)n/3 - 2T bins to pack L. Since al + a2 + a3 = 1, an optimum
packing requires only n/3 bins. Therefore, the worst-case performance ratio is
always larger than 1 + l/2 + l/6. In general, let xj = l/(kj f 1) + c for 1 5 j I
i - 1 and xi = l/kj - (i - l)e, where e is a sufficiently small positive number. It
follows from (3.9) that Cj=, Xj = 1. If the list L contains n/i xj’s for each 1 I j I i
and smaller pieces always come after larger ones, then it is easily derived that any
on-line algorithm requires more than C&, (n/i - kjT)/kj bins to pack L. In com-
parison with optimum packing, which requires only n/i bins, it follows that any
on-line bin-packing algorithm cannot have a worst-case performance ratio better
than Cj=, l/kj. Since i can be arbitrarily large, we arrive at the following conclusion.

THEOREM 3. Let A be any 0(I)-space on-line bin-packing algorithm. Then r(A)
1 I%, = 1.6910.. . .

568 C. C. LEE AND D. T. LEE

COROLLARY 2. The number G, = 1.6910 . . . is the greatest lower bound for
the worst-case performance ratio of any 0(1)-space on-line bin-packing algorithm.

PROOF. Corollary 1 implies that, for any IS > 0, there exists an integer N such
that] r(HARMONICM) - G,] < 6 for all M > N. The corollary holds since
HARMONI& is an 0(I)-space algorithm and G, is a lower bound for
r(HARMONICM).

As a result, if only a constant amount of temporary space is allowed, the algorithm
HARMONI& is asymptotically optimal as M + 00. Q.E.D.

5. REFINED-HARMONIC

In this section, we modify, at the expense of storage space, the algorithm HAR-
MONIC,,, to improve the worst-case performance ratio to 1.6359 . . . , which is
better than the ratio 1.666 . . . of REFINED-FIRST-FIT [121. Indeed, the algorithm
REFINED-HARMONIC to be presented is an O(n)-space and O(n)-time algo-
rithm.

In algorithm HARMONIC,+,, and II-piece whose size is slightly over l/2 occupies
one bin alone; this seems too wasteful. If this category of II-pieces can be properly
packed with certain smaller pieces, an improvement on the worst-case performance
can be expected. To achieve this, the unit interval is now partitioned into M + 2
subintervals as follows: (0, l] = (U;l”=, Jk) U J, U Jb, where J1 = (59/96, 11, J, =
(l/2,59/96], JZ = (37/96, l/2], Jb = (l/3, 37/96], Jk = (l/(k + l), l/k], for k = 3,
4 * * 9 M- 1,and JM= (0, l/M], where M is chosen to be 20. In comparison
v&h the harmonic partition of Section 2, it is seen that Jk =Zkfor3Ik(Mand
that I, = J, U J, and I2 = Jz U Jb. The packing strategy for Jk-pieces, 1 5 k % M,
will be the same as that for &pieces in HARMONICM but J,- and Jb-pieces will
be “mixed.” In other words, the intention is to pack small Ii-pieces (i.e., J,-pieces)
with small I*-pieces (Le., Jb-pieces) in some predetermined manner. Note that the
sum of a J,-piece and a Jb-piece never exceeds unity.

As before, a bin used to pack Jk-pieces exclusively is called a Jpbin, 1 = k % M,
each Jk-bin can pack exactly k Jk-pieces, for 1 5 k < M, and a J,,,-bin can pack at
least to a capacity (M - 1)/M. There are four possibilities for a bin used to pack
J,-pieces and Jb-pieces:

(1) A J,-bin contains a J,-piece only.
(2) A Jb-bin contains a Jb-piece only.
(3) A Jab-bin contains one Jo-piece and one Jb-piece.
(4) A Jbb-bin contains two Jb-pieces.

For convenience, a bin is classified as a Jbt-bin, instead of a Jb-bin, if it contains a
Jb-piece only, but is designated to become a Jbb-bin as soon as the next Jb-piece is
received. In REFINED-HARMONIC, the number of Jb,-bin never exceeds one.
We use N,, N,, Nab, Nbb, and Nb’ to count the numbers of Jo-bins, Jb-bins, Jab-bins,
Jbb-bins, and Jb,-bins, respectively, during the processing. Also, let N, = Nb + Nab.
Given the list L = (a,, a2, . . . , a,), we now describe the algorithm.

Algorithm REFINED-HARMONIC
1. N,=Nb=Nab=Nbb=Nb’=Nc=O
2. If ai is a Jk-piece, 1 I k 5 M

then use algorithm HARMONI& to pack it

A Simple On-Line Bin-Packing Algorithm

3. else if ai is a J,-piece
then if Nb # 0, then pack ai into any Jb-bin; Nb c Nb - 1; Nab t Nab + 1

else place ai in a new (empty) bin; N, c N, + 1
4. else if ai is a Jb-piece

then if NW = 1

5.
then pack ai into the J@-bin; NW c 0; Nbb c Nbb + 1
else if NIL, 5 3N,

then place ai in a new bin and designate it as
a J&-bin; Nb’ c 1

else if N, # 0

end

then pack ai into any J,-bin; N, + N, - 1;
Nab+Nob+ l;N,+N,+ 1

else place ai in a new bin; Nb t Nb + 1; N, c N, + 1

569

It is obvious that each item takes 0(1) time to pack and REFINED-HARMONIC
is therefore an O(n)-time algorithm. However, the algorithm has to store all J,-
bins and Jb-bins during the processing and thus needs O(n)-space.

6. Worst-Case Analysis of REFINED-HARMONIC

For 1 I k I A4, let nk be the number of Jk-pieces in L and mk the total number of
Jk-bins used by REFINED-HARMONIC. Also, let sM be the total size of all Jw
pieces in L. Since algorithm HARMONI& is used to pack these pieces and bins,
we have from Section 2 that mk = rnk/kl < Q/k + 1, for 1 5 k I M - 1 and
mM < kts~/(kt - 1) + 1. Let n, and nb denote, respectively, the numbers of J,-
pieces and Jb-pieces in the list L. Let m,, mb, mab, mbb, mb’, and m, be the final
values (i.e., the values at the end of processing) of N,, Ni,, Nab, Nbb, Nb,, and N,,
respectively. Note that m, = mb + mab and

and

nb = 2mbb + mc (6. la)

n, = ma + mab. (6.lb)

Essentially, the algorithm is designed to yield a ratio of mbb to m, equal to 3
asymptotically (step 5). Specifically, the algorithm maintains 3(N,
3(N, + 1). Thus we have

-3 5 mbb - 3mc 5 3.

It follows from (6. la) and (6.2) that

- I)<&<

(6.2)

and that

nb 6 nb 6 ---
7 7=mc=7+7*

(6.3)

(6.4)

It is also clear that the algorithm ensures that a Jo-bin and a Jb-bin never coexist.
In other words, we have N,iVb = 0 all the time and thus

mamb = 0. (6.5)

570 C. C. LEE AND D. T. LEE

The total number of bins used by REFINED-HARMONIC to pack L is given by
M

REFINED-HARMONIC(L) = c mk + ma + mbb + mc + mb’
k=l

-+(M- 1)

To proceed further, we need to distinguish two cases based on (6.5).

Case 1. m, = 0. In this case, it follows from (6.3), (6.4), and (6.6) that

REFINED-HARMONIC(L)
M-’ nk Ms,w

< I--+
k=l k

=+(M- I)+?+;+ 1.

In parallel with the fraction function g of Section 2, we define hi as

h,(x) = a = g(x) if xEJk and l<ksM-1

Mx
= - = g(x)

M- 1
if x E JM

(6.6)

(6.7)

4 =-
7

= 0 if XEJ,, (6.8)

which represents the fraction of a bin costed by an item of size x in REFINED-
HARMONIC.

Case 2. mb = 0. In this case, we have m, = mab. Therefore, it follows from
(6.1 b), (6.3), and (6.6) that

REFINED-HARMONIC(L)
M-1 nk MSM

< c-+--
k=,k M-l

+(M- I)+n,+++G+ 1. (6.9)

The corresponding fraction function is thus given by

h(x) = ; = g(x) if XEJk and IsksM-1

Mx
= ~ = g(x)

M- 1
if XEJM

= 1 if XEJ,.

Having defined hi and hi, we are ready to study the worst-case performance
ratio of REFINED-HARMONIC. As before, let (y, , y2, . . . , yt) be the content of
an arbitrary bin in an optimum packing, where y, r y2 2 . . . L y,. Let Hj denote
the supremum of C:=, hj(yi) for all yI, y2, . . . , y,, j = 1, 2. Then, using the same

A Simple On-Line Bin-Packing Algorithm

arguments of Section 3, we have

571

r(REFINED-HARMONIC) < maxiHi, HZ}.

LEMMA 1. H, < 1.63.

(6.10)

PROOF. It is easy to verify that h,(x)/x 5 96/59 for x 4 Jb. This implies that
C&l h,(yi) 5 96/59 = 1.627 . . . if there is no Jb-piece among the y’s Now assume
that there is at least one Jb-piece in (yi, y2, . . . , yl}. Then we have four possible
cases as follows:

Casel. yl~J,.Theny2EJbandy3+...+y,<5/96EJ20=J~.Thus,we
have ziEl h,(yi) < 1 + 4/7 + 5/96.20/19 = 1.626.. . ,

Case 2. yl E J,. Then, h,(y,) = 0 and y2 + y3 + . . . + yt < l/2. Since h,(x)/x
I 12/7 for all x E (0, 11, we have C&l h,(yi) < l/2.12/7 < 1.

Case 3. yl E Jz. Then y2 E Jb and y3 + . . . + yf < 27/96. Since h,(x) = g(x)
for x < 27/96 and since (3.7) implies that g(x)/x 5 6/5 for x < 27/96 < l/5, we
have &i h,(yi) < l/2 + 4/7 + 27/96.6/5 = 1.4089.. . .

Case 4. y, E Jb. If y2 E Jb, then y3 + . . . + y, < l/3 and we have C&i h,(yi) <
4/7 + 4/7 + l/3.4/3 < 1.6, since h,(x)/x = g(x)/x < 4/3 for x < l/3. If y2 @ Jb,
then y2 < l/3 and Cf=i h,(yi) c 4/7 + 2/3.4/3 < 1.5. Q.E.D.

LEMMA 2. H2 < 373/228 = 1.6359

PROOF. It is easy to verify that h2(x)/x 5 96/59 for x B J,. This implies that
C{=l h2(yi) I 96/59 = 1.627 . . . if yr 4 J,. Assume that yl E J,. Then we have four
possible cases as follows:

Case 1. y2 E J2. Then y3 + ... + yt I 1 l/96 E Js. Since hz(x)/x I 9/8 for
x < 1 l/96 < l/8, we have x:=1 hz(yi) < 1 + l/2 + 1 l/96.9/8 < 1.63.

Case 2. y2 E Jb. Then y3 + . . . + y, < l/6. Since hz(x)/x 5 7/6, for x < l/6,
we have C&l hz(yi) < 1 + 3/7 + l/6.7/6 < 1.63.

Case 3. y2 E J3. Then y3 + . . . + y, < l/4. If y3 E J4, then y4 + . . . + yr <
l/20 E JM and C:=l hZ(yi) C 1 + l/3 + l/4 + l/20.20/19 = 373/228. If
y3 e 54, then y3 < l/5 and x,tl hz(yi) < 1 + l/3 + l/4.6/5 = 1.6333.. . .

Case 4. y2 < l/4. Then since hz(x)/x < 5/4 for x < l/4, we have CL1 h2(yi) <
1 + l/2.5/4 = 1.625. Q.E.D.

From these two lemmas, we have the following theorem.

THEOREM 4. The worst-case performance ratio of REFINED-HARMONIC

r(REFINED-HARMONIC) 5 g (= 1.6359. . .) for M = 20.

7. Concluding Remarks
We have presented an 0(I)-space and O(n)-time on-line bin-packing algorithm
whose performance is far better than that of NEXT-FIT. In particular, for M > 6,
HARMONI&, has a worst-case performance ratio strictly less than 1.7, which is
better than FIRST-FIT-an O(nlogn)-time algorithm. Also we have shown that
G,(= 1.6910 . . .) is the greatest lower bound for the worst-case performance ratio
for any 0(I)-space on-line algorithm.

572 C. C. LEE AND D. T. LEE

We have also presented an O(n)-space and O(n)-time algorithm and shown that
its worst-case performance ratio is less than 1.636, which is better than any on-line
bin-packing algorithm known to date.

As a possible direction of future research, one may try to modify HARMONI&
in a more sophisticated manner [9] so as to improve its worst-case performance
ratio, possibly at the expense of time-complexity. Finally, we note that it is plausible
to extend the idea to bin-packing problems in higher dimensions.

ACKNOWLEDGMENTS. The authors wish to thank Professor A. C. Yao and an
anonymous referee for their comments on an earlier draft of the paper. Their
suggestions have helped improve the presentation of the paper.

REFERENCES

1. BROWN, D. J. A lower bound for on-line one-dimensional bin packing algorithms. Tech. Rep. No.
R-864, Coordinated Sci. Lab., Univ. of Illinois, Urbana, Ill., 1979.

2. COFFMAN, E.G., JR., CAREY, M. R., AND JOHNSON, D. S. Approximation algorithms for biu-
packing-An updated survey. Bell Laboratories, Murray Hill, N.J., Oct. 1983.

3. CAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory ofNP-
completeness. W. H. Freeman & Co., San Francisco, Calif., 1979.

4. CAREY, M. R., AND JOHNSON, D. S. Approximation algorithms for bin packing problems: A survey.
In Analysis and Design ofAlgorithms in Combinatorial Optimization, G. Ausiello and M. Lucertini,
Eds. Springer-Verlag, New York, 198 1.

5. JOHNSON, D. S. Near optimal bin packing algorithms. Ph.D. dissertation, MIT, Cambridge, Mass.,
June 1973.

6. JOHNSON, D. S. Fast algorithms for bin packing. .I. Comput. Cyst. Sci. 8 (1974), 272-3 14.
7. JOHNSON, D.S., DEMERS, A., ULLMAN, J.D., CAREY, M.R., AND GRAHAM, R.L. Worst-case

performance bounds for simple one-dimensional bin packing algorithms. SIAM .I. Comput. 3
(1974), 299-325.

8. KARP, R. M. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, R. E. Miller and J. M. Thatcher, Eds. Plenum Press, New York, 1972, pp. 85-103.

9. LEE, CC., AND LEE, D.T. A new algorithm for on-line bin packing. Tech. Rep. No. 83-03-FC-
02, Dept. of Electrical Engineering and Computer Science, Northwestern Univ., Evanston, Ill.,
Nov. 1983.

10. LEE, C. C., AND LEE, D. T. Robust on-line bin packing algorithms. Submitted for publication.
11. LIANG, F. M. A lower bound for on-line bin packing. Inf Proc. Lett. 10 (I 980), 76-79.
12. YAO, A. C. New algorithms for bin packing. J. ACM. 27 (1980), 207-227.

RECEIVED MAY 1983; REVISED OCTOBER 1984; ACCEPTED JANUARY 1985

Journal of the Association for Computing Machinery, Vol. 32, No. 3, July 1985

